Furthering Usability and Efficiency of Massively Parallel Gaussian
Process Regression as Applied to Multi-Beam Sonar Data

by

Phillip M. Parisi
Department of Ocean Engineering
University of Rhode Island
philparisi@Quri.edu

October 2022

A THESIS PROPOSAL SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR
THE DEGREE OF

MASTER OF SCIENCE
IN

OCEAN ENGINEERING

1 Statement of Problem

Gaussian Process Regression (GPR) is a supervised machine learning approach for learning input-output
mappings from training data (Rasmussen, 2006). GPRs can generate estimates at new prediction points
along with the associated uncertainties. The underlying computation, however, suffers from mathematical
inefficiencies (e.g. the inverse operation requiring O(N?) time complexity) which renders the most basic
implementation of a GPR intractable for large data volumes (Rasmussen, 2006). Krasnosky (2021) intro-
duced a parallel computational framework to speed up the algorithm, leading to an online GPR solution that
generates a terrain model with uncertainties from a set of input points collected in a push broom manner.
GPR was shown to improve the resolution of seafloor terrain models made from multibeam sonar data and
can generate an uncertainty model which other standard mapping methods (splines, gridded, polynomial,
etc.) lack (Krasnosky, 2021).

Depth.(m)
700

1000 -

2500
GPR Solution 75m Gridded Standard Product

Figure 1: Bathymetry maps produced using MP-GPR (left) and the standard 75mm gridding method (right). Higher resolution is
evident in the GPR. Figure from Krasnosky (2021).

Krasnosky’s (2021) Massively Parallel Gaussian Process Regression (MP-GPR) offers numerous compu-
tational speed-ups, namely an approximation to the kernel function, usage of a graphics processing unit
(GPU) to perform mathematical operations, and iterative matrix updates that incorporate new bathymetric
data as an input stream. While MP-GPR made standard GPR tractable on sonar data it still requires
computationally robust hardware (high-end GPUs) and suffers from inefficient kernel hyperparameter opti-
mization (Krasnosky, 2021). The hyperparameters within the GPR define the anticipated length scale and
variance of the input points and can be optimized based on the data. Additionally, bathymetric data can be
over-sampled during certain collection scenarios (e.g. ship turns will result in high point density) where an
intelligent reduction of training data could substantially decrease computation time with a minor reduction
in model accuracy.

2 Justification for and Significance of Study

GPR has been applied to underwater terrain modeling (Barkby, 2012), terrain aided navigation (TAN)
(Hitchcox and Forbes, 2020), and simultaneous localization and mapping (SLAM) (Ma et al., 2018). Utilizing

a GPU to compute GPR solutions has also been explored (Franey et al., 2012; Gramacy et al., 2014).
However, these methods sought GPR solutions as a post-processing tool. Krasnosky’s (2021) MP-GPR
proposed an online updateable GPR model that leveraged parallel processor cores on a GPU for real-time
bathymetric map generation. This MP-GPR terrain model was paired with a bathymetric distributed particle
SLAM (BPSLAM) (Barkby et al., 2012) method to produce the novel GPU-based extension of BPSLAM
(GP-BPSLAM) (Krasnosky, 2021).

MP-GPR and GP-BPSLAM run in real-time but require significant computer power (e.g. a NVIDIA
2080ti GPU with 4352 CUDA cores). Modern mobile platforms, such as autonomous underwater/surface
vehicles (AUVs/ASVs), are unlikely to possess high-end GPUs due to their significant power consumption.
With ever increasing sensor resolution and acquisition rates, there is a need to further reduce GPR compute
time for real-time performance on a wide-range of hardware, such as the smaller NVIDIA Jetson NX Xavier,
to make MP-GPR broadly applicable and relatively platform agnostic (Krasnosky, 2021).

GPR has also been employed to map environmental variables, such as radiation (West et al., 2021). The
development of spatial and temporal maps of environmental variables (e.g. temperature, salinity) would
benefit from an efficient GPR solution. Field data gathered by mobile devices or sensors moving in 3D space
is susceptible to transient changes in environmental conditions, yet modern mapping methods are unable to
appropriately express the time domain. A robust approximate MP-GPR framework including time would
enable development of online spatiotemporal maps. Notably, projects similar to the Rhode Island Consortium
for Coastal Ecology Assessment Innovation and Modeling (RI C-AIM) would find value in such maps created
for Narragansett Bay.

3 Methodology and Procedures

3.1 Gaussian Process Regression

Empirical data points D from a set of N observations, known as training data, consists of inputs « and
corresponding targets y. Each observation x; of d dimensions maps to a scalar target y;, which is a noisy
realization of the underlying function f. That is,

€T GRNdey GRva’L :f(wl)+€a

where ¢ denotes error. When applied to seafloor mapping, ; = (northing, easting) and y; = depth.
During the training portion of the problem, D is used to learn the underlying function f. During the
inference step, f is used to predict depth y* over a new set of geographically dense inputs * to form a map.
An important component of any GPR model is the kernel. A commonly used kernel is the squared
exponential (SE) kernel:
’ 2 |£B — :B’|2
k(x,z") = afexp(—T), (1)

where | — @’| denotes the magnitude of the difference between vectors and «’, and 8 = {l,afc} are
hyper-parameters. MP-GPR utilizes an approximation to the SE kernel which incorporates the same hyper-
parameters.

3.2 Approximate Methods

In general, a multitude of “approximate methods” have been developed to reduce GPR compute time for
regression and classification. As standard GPR scales with O(N?), most approximate methods fabricate a
representative data set Dy containing M points, where M <« N. Dpg can be composed of a subset from the
training data D or of newly generated pseudo-data points that may not be present in D, such that Dr ¢ D.
Dp then serves as the training data for the model in lieu of D, decreasing algorithm time complexity and
reducing model accuracy to various degrees. Selecting points from D to form Dpg will be referred to as
downsampling.

The Subset of Data (SD) family of approximate methods select a sample of the training data to pass
to the model which uses the standard GPR inference equations. Notable SD candidates include uniform
random downsampling, systematic downsampling, and heuristic-based methods such as entropy change Ah
(Lawrence and Platt, 2004) and information gain Ai (Seeger et. al., 2003). SD time complexity is O(M3).
Projected Processes (PP) include an extension of entropy change and information gain that incorporate
information from all IV training points into the GPR inference equations. PP methods have a time complexity
of O(NM?). Lastly, joint optimization methods, which select pseudo-points for D and hyperparameters
concurrently, are effective yet require an alternative problem formulation to GPR and will not be considered
in this study. All methods face the cost of choosing the points in Dg; hence, cheap (“greedy”) selection
criteria are desired (Rasmussen, 2006). Additionally, every method requires a retuning of hyperparameters
to account for the modified training data.

3.3 Approaches in this Study

The goal of this study is to determine the “best” approximate method for online seafloor mapping. Extensions
will be built onto Krasnosky’s GPR code base, and testing will be performed using data from surveys
previously completed by the Roman Marine Robotics Lab.

SD approximate methods will be explored first, followed by PP if needed. MP-GPR arranges live survey
data spatially into “blocks” which are passed to the on-board GPU for processing. The approximate methods
will be implemented at the block level of the algorithm as “blockulators” that select which points from
incoming sonar pings will be included into the next block (D — Dpg). There is an inherent trade off
between algorithm accuracy and speed when selecting the percentage of points that remain in Dg. This
downsample percent parameter will require tuning for each approximate method and subsequent retraining
of hyperparameters. The study will seek to find the approximate method that offers the greatest runtime
reduction while maintaining an acceptable level of accuracy relative to the full solution.

The following approximate methods are examples of what may be implemented (non-exhaustive list):

a Uniform Random SD method that exploits a uniform random distribution to select points,
a Systematic SD method that selects every jth point,

a Random Hybrid SD method that combines systematic and uniform random selection,

an Information Gain SD or PP method that uses a heuristic to informatively select points.

Figure 2: Initial results comparing a Standard GPR solution (left) to the Random Downsampling Approximate Method (right) with
downsample percent set to 0.1. Each red point represents a sonar sounding. Colored blocks visualize the GPR solution calculated over
a given block of points.

Each candidate method will first be tested in MATLAB and trained on two-dimensional data (x,y €
RY). Then, the method will be implemented in C++ as a blockulator in the existing MP-GPR code base.
Numerous speed tests will be run to calculate the average runtime of the approximate method. Each run will
generate the same set of prediction points, which will be compared against the predictions of standard GPR
as a baseline. Two metrics will be computed: computational speed-up, T, and coefficient of determination
R?. The M points included in Dg (such that M/N = downsample percent) can be varied to find the
maximum 7}, that can keep R? above a threshold (e.g. R? > 0.95). It is expected that as M decreases,

T, will increase while R? decreases. Initial experimentation has shown curves similar to Figure 1, though
alternative behavior may be seen upon implementation. Error statistics, such as mean absolute error (MAE)
or mean squared error (MSE), may be used to quantify error alongside the coefficient of determination.

X

R? Fit of Approx. to Standard
Approx. vs. Standard Speed-up T

0
Many Few Many Few
Number of Points in DR Number of Paints in DR

Figure 3: Experimental behavior as the points in D decrease for the systematic selection method. It is expected that the R? fit (left)
exhibits a decrease with an exponential term. Methods must stay above an acceptable threshold (shown at 0.95). T (right) is expected
to increase as fewer data points are included in Dg.

After running trials on each method, a side-by-side comparison of the various methods will be feasible.
Determination of the fastest GPR approximate method that stays above the accuracy threshold will conclude
this study. Online field testing may ensue, time and weather permitting.

4 Resources Required
The resources required for the project are:

1. MP-GPR code. Code base access has been granted via Bitbucket and initial simulations were executed.
All package dependencies are open source and accessible.

2. Laptop and/or desktop with a graphics processing unit (GPU). The Roman Marine Robotics Lab
currently has these machines available.

3. Bathymetric survey data in .rosbag format. Data is accessible and has been obtained.

4. Software (e.g. MATLAB). The University of Rhode Island provides a MATLAB license; all other
programming languages required (C++, ROS, CUDA) are open-source.

Thus, within the current scope of this thesis, all resources needed have been obtained. No further costs
or acquisitions are necessary at this time.

5 Works Cited

References
[1] S. Barkby et al. “Bathymetric particle filter slam using trajectory maps”. In: The International Journal
of Robotics Research (2012), 31(12):1409-1430.
[2] M. Franey, P. Ranjan, and H. Hipman. “A Short note on gaussian process modeling for large datasets
using graphics processing units”. In: arXiv preprint arXiv1203.1269 (2012).
[3] R.B. Grammacy and D. W. Apley. “Local gaussian process approximation for large computer experi-
ments”. In: Journal of Computational and Graphical Statistics (), 2(1):564-578.
[4] Kristopher Krasnosky. “A Massively Parallel Implementation of Gaussian Process Regression for Real
Time Bathymetric Modeling and Simultaneous Localization and Mapping”. In: (2021).
[5] Neil D. Lawrence and John C. Platt. “Learning to Learn with the Informative Vector Machine”. In:
Proceedings of the twenty-first international conference on Machine Learning (2004).
[6] T.P. Minka. “Expectation propagation for approximate Bayesian inference”. In: PhD thesis, Dep. of
FElectrical Eng. and Comp. Sci.:; MIT (2000).
[7] C. E. Rasmussen and C. K. I. Williams. “Gaussian Process for Regression”. In: Advances in Neural
Information Processing System 8 (1996), pp. 514-50.
[8] C.E. Rasmussen and C.K.I Williams. Gaussian Processes for Machine Learning. MIT Press, 2006.
[9] Matthias Seeger, Christopher K. I. Williams, and Neil D. Lawrence. “Fast Forward Selection to Speed
Up Sparse Gaussian Process Regression”. In: (2003).
[10] E. Snelson and Z. Ghahramani. “Sparse gaussian processes using pseudo-inputs”. In: Advances in
neural information processing systems (2005), 18:1257-1264.
[11] A. West, I. Tsitsimpelis, and et al. “Use of Gaussian process regression for radiation mapping of a

nuclear reactor with a mobile robot”. In: Sci Rep 11 (2021).

